
Modal Synthesis

HE IDEA BEHIND MODAL SYNTHESIS IS to construct the

T neutron flux from predetermined static shapes, depend­

ing on space only. The coefficients multiplying these

shapes, the modal amplitudes, will depend on time.

Thus it is left to find the differential equations which drive the modal

amplitudes, and also to solve these equations.

Modal Notation

In a very general approach, modal synthesis is written as

K

[4>] = I ['I\(r)][Tk(t)]
k = I

(EQ91)
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where ['I'k(f')] is a G X G diagonal matrix containing the elements of

the k1hmode, and [Tk(t)] is a column vector of G elements, the

modal amplitude vector.

There is in the expansion (91) K shape functions or modes. which are

time independent. Consequently. the modal expansion can only be an

approximate relationship, which cannot be valid at all spatial points at

all times. We therefore demand that the modal expansion be correct in

an integral sense rather tan in a local sense.

To be more precise. equation (91) is substituted in the time dependent

diffusion equations, and equality is required after it has been spatially

integrated over the entire reactor volume. The equality between the

modal expansion and the flux will not be att~ned.and it may very well

be that there is not a single point in space where it is valid. The approx­

imate relationship will still be a solution of the spatially integrated

equations.

Mathematical Derivation

In order to determine the differential equations that govern the modal

amplitudes. we start by introducing, for more generality, the K weight

functions

[Wr(r)], r=1, ...• K
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which are diagonal G X G matrices. We substitute (91) in the time

dependent diffusion equations in matrix form, which we pre-multiply

by [W,(r)] and that we integrate over space to get

K

(I «(W,(f)][V]-I~..['ltk(r))[Tk(t)])J
\.k ~ 1 at

~ , . ,(V" [D]V['ltk(r)J[Tk(t)] - [~]['ltk(r)J[Tk(t)]}
= L (LW,(r)J T

k = ! + (I - j3)[XP][v~rl ['ltk(r)J(Tk(t)]

D

+ I 1\; ([W,(r)][Xf]C;)
; = 1

and

K

= I f3;([Wr<r)J[XfJ(v~rlT['ltkJ(Tk])
i = 1

-1\; ([WP)J[xf]C;>

Let us define the matrix

(EQ92)

We take the [Tk(t)] out of the spatial integrals, and we pre-multiply

the two equation system by the matrix l.sdrr] to get, after having added

and substracted the terms in f3; to the flux equation,
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K

I [.szlrrJ[drk]dd [T:)
k ~ 1 t
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K

= I [.sdrrJ([Wk]
k = 1
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K D

- I I f3i[.szlrr]([Wr][X?][V~f]['I'k])[Tk]
k=li~1

D

+ I Ai[.szlrr]([Wr][x?J['I'dC)
i = 1

and

:t[.sdrr]([WrJ[X?J['I'k]C) =

K

J3i I [.szlrrJ< [Wr][x?J[v~rlT ['I'k])[Tk]
k ~ I

Before proceeding any further, we notice that point kinetics could well

have been done without the average life of the neutrons, the A term.

To see this, consider the point kinetics equations
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~T
dt

D

P 13)r "= (X-X +L AiCi
1= 1

d Pi
-C = -T - A·Cdt I A I I

It is dear that only the ratios *and ~ are reqaired in the theory. Fur­

thermore, if we examine these mtios together with the point kinetics

parameter definitions, we c~n see that these ratios do not involve the

denominator

D

«(1 -13)[xP
] + i~1I3i[Xf]}V2;f]T[S])

We thus take as example the point kinetics derivation, and we define

the following quantities:

• a modal precursor concentration

• a modal delayed neutron fraction

and

D

I [A-Ipfk]
i = 1

• a modal reactivity matrix
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~

V . [DJV['I'kJ - [~]['I'kJ

D

+ ((l-13)[lJ + i~l13j[XrJ)

X [VkrlT['I'k]

With these definitions, we can rewrite the flux and delayed preCllfsor

equations in the form

and

K

P~l [s4rr][~rpJ:t[TpJ
K D

= I ([A -lprkJ - [A -113 rk])[TkJ + I Aj[CfJ
k=l i=l

(EQ 93)

~[crJ
dt 1

K D

- I [A -113[k][Tk] - I Aj[CfJ
k = I i ~ 1

(EQ 94)
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Equation Structure

We have established in all generality the differential equations for the

modal amplitudes of any of the modal synthesis methods. Note that no

hypothesis other than the time independence of the modes has been

necessary. Linear independence is required however, because in cer­

tain cases the inverses of tIle matrices that appear in the modal param-
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eter definitions would become singular. Orthogonality of the modes is

not required for the determination of the modal amplitudes, and of the

resulting synthesis.

It is worth noting that the modal amplitudes obey a differential system

of equations whose structure is very much the same as that of the point

kinetics equations. This provides an indication that the solution tech­

niques could be generalized to modal equations without too much dif­

ficulties.

In practice, the solution of these equations with a given mode set is

done directly from the system of coupled differential equations result­

ing from the matrix decomposition element by element. The matrix

formulation is useful because:: it makes for a compact netation, and

because it emphasizes the resemblance with the point kinetics equa­

tions.

Also, and therein lies a great advantage for modal methods, all the

modal parameters can be pre-calculated for a given reactor, once the

set of modes has been chosen. For example, an absorber rod (like an

adjuster rod in a CANDU reactor) moves in a very precise area of the

core, and it is easy to calculate the integrals that appear in the modal

reactivity. In an actual simulation, these modal reactivities only have

to be interpelated in the pre-calculated tables, which saves a great deal

of calculational effort.
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Many types of modes can be used in modal analysis. In particular, pre­

calculated flux shapes corresponding to the reactor perturbed in dif­

ferent ways could be used. This is known as "temporal synthesis",

which is an excelIent method mostly used in light water reactor simu1.a­

tions. It requires a set of modes that are "close" to the perturbations

being studied, and there is a certain degree of experience required in

choosing adequate modes. Also, it can be the case that such modes are

almost linearly dependent, which makes the differential equations dif­

ficult to solve. A decontamination of the different modes may be

required tominimize this problem...

lambda Modes

A method very much in use for the analysis of CANDU reactors is syn­

thesis by the so-called A modes. These are the solutions of the static

equations for the non perturbed reactor,

for the successive values of An .These modes are the eigenvectors of the

static equations, corresponding to eigenvalues of lower value than the

Keff • These eigenvectors take negative values in certain areas of the

core. It is quite difficult to calculate more than about twenty of these

modes, since the eigenvalues tend to become closer to one another: the
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dominance ratio is pretty close to one, and convergence becomes very

slow.

The adjoint modes are calculated at the same time, to be used as weight

functions. These are the solutions of the problem

1
= -[MoH 'IT~]

A*n

It is easy to show the orthogonality relationship,

This tells us that when m = n, then Am= An' or that the eigenval­

ues of t.~e two systems are the same. On the other hand, if m oF n, then

([ 'ITciHMoH'ITn]) = O.

Ifwe use these adjoint fluxes as weight functions, we will find that

and this simplifies significantly the differential equations for the modal

amplitudes, p~_rticu!arly on the right hand side, which now only has

diagonal elements.
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